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Relaxation oscillations in a kinetic model of catalytic
hydrogen oxidation involving a chase on canards
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Abstract

A detailed study of two- and three-variable mathematical models of a heterogeneous catalytic system is presented with special attention
to weakly stable dynamics, a type of complex irregular behavior frequently encountered in oscillating chemical reactions. One of the most
important properties of the weakly stable dynamics is “a sensitive dependence on the initial conditions”. Our analysis of a global error
in long-term numerical integration shows that a high sensitive dependence on the initial conditions appears in the three-variable system
with fast, intermediate and slow variables due to existence of the canard cycles which occur close to Hopf bifurcation in the one-parameter
family of two-variable subsystems.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Relaxation oscillations characterized by two quite differ-
ent time scales have been observed in physical, chemical and
biochemical systems[1–3]. Investigation of relaxation and
chaotic oscillations in many heterogeneous catalytic systems
has been developed very rapidly during recent years[3–6].
Our renewed interest in relaxation oscillations[7] arose from
the introduction and use of Non-Standard Analysis in the
study of singular perturbations in applied problems. A major
claim to fame for Non-Standard Analysis is the discovery of
a new phenomenon in relaxation oscillations that was called
“Les Canards” or “Ducks” by a group of French mathemati-
cians[8,9].

In this paper, the Ducks will be chased in an one-parameter
family of two-variable mathematical models of oscillating
heterogeneous catalytic system, that is, our purpose here
is to analyze numerically the transition from the harmonic
oscillations near the Hopf bifurcation to large amplitude
relaxation oscillations as the bifurcation parameter is var-
ied. In effect, the range of the parameter is extremely small
where the canard configurations are observed. We note that
the canard configurations appearance is comparable with
the simplest global (co-dimension one) bifurcations of pe-
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riodic solutions of singularly perturbed systems. In other
words, in the generic one-parameter family of two-variable
dynamical systems it is an inherent peculiarity[10]. Hence,
the canard appearance is not destroyed by the addition of a
small smooth perturbation to the one-parameter family.

At the end of the paper, we will discuss the phenomenon
of “weakly stable dynamics”[11] of the global reaction rate
in the three-variable model with fast, intermediate and slow
variables. Its connection with both the canard cycles in the
one-parameter family of two-variable systems with fast and
intermediate variables and the influence of the global error
in long-term numerical integration of ordinary differential
equations[12] as a source of stochastic effects will also be
demonstrated.

Let us consider the mechanism of the heterogeneous re-
action of hydrogen oxidation on metallic catalysts[13,14]:

H2 + 2[Me] ↔ 2[HMe]

O2 + 2[Me] ↔ 2[OMe]

2[HMe] + [OMe] → 3[Me] + H2O

H2 + [OMe] → [Me] + H2O

[Mev] + [HMe] ↔ [MevH] + [Me]

[Mev] + [OMe] ↔ [MevO] + [Me]

(1)

Here [Me] and [Mev] are a vacant active site on the catalyst
surface and an atom in the subsurface layer, respectively,
[HMe], [OMe] and [MevH], [MevO] are hydrogen and oxy-
gen atoms adsorbed on the surface and dissolved into the
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subsurface layer of the catalyst. The last two steps in
Scheme 1 are assumed to be slow in comparison to adsorp-
tion and reaction steps. We shall study the case when the acti-
vation energies of the third and fourth reaction steps may
depend linearly upon the concentrations of the reactants in
the subsurface layer and upon the concentration of oxygen
adsorbed[3,4,13].

2. Mathematical model

The dynamic behavior of the catalytic system (1) is
described by a set of six non-linear ordinary differential
equations:

ẋ1 = 2[k1x5(1 − x1 − x2)
2 − k−1x

2
1 − k3(x)x

2
1x2]

−β1ẋ3,

ẋ2 = 2[k2x6(1 − x1 − x2)
2 − k−2x

2
2] − k3(x)x

2
1x2

−k4(x)x5x2 − β2ẋ4,

ẋ3 = k5x1(1 − x3) − k−5x3(1 − x1 − x2),

ẋ4 = k6x2(1 − x4) − k−6x4(1 − x1 − x2),

δẋ5 = −δβ[k1x5(1 − x1 − x2)
2 − k−1x

2
1 − k4(x)x5x2]

+x50 − x5,

δẋ6 = −δβ[k2x6(1 − x1 − x2)
2 − k−2x

2
2] + x60 − x6,

(2)

wherex1, x2 are surface coverages by hydrogen and oxygen
adsorbed on the metal surface, so thatx1 ≥ 0, x2 ≥ 0, x1 +
x2 ≤ 1; x3, x4 the concentrations of hydrogen and oxygen
dissolved into subsurface layer counted up as ratios to the
upper limit-values of these concentrations, respectively, so
that 0≤ x3 ≤ 1 and 0≤ x4 ≤ 1; x5, x6 are partial pressures
of hydrogen and oxygen in the gas phase;x50, x60 are inlet
values ofx5 andx6, respectively;k±1, k±2, k±5, k±6 the rate
constants of the reversible reaction steps in (1);β1, β2 the
upper limits of the concentrations of hydrogen and oxygen
dissolved into the subsurface layer measured in mono-layers;
β the conversion factor of concentrations in the gas phase
and on the catalytic surface;δ in the residence time. More-
over, the rate constants of the third and fourth steps are
as follows:

k3(x) = k30 exp(µ32x2 + µ33x3 + µ34x4),

k4(x) = k40 exp(µ42x2 + µ43x3 + µ44x4),

where the parametersk30, k40 are positive andµij (i = 3,4,
j = 2,3,4) are real numbers. Note that the gradients of
dissolved reagents are suggested to be small.

After some simplifications we can obtain several re-
duced models keeping the physical and chemical sense of
the catalytic system dynamics and peculiarities being of
high importance to the complex irregular behavior. The
three-variable version of the kinetic model (2) looks as
follows:

ẋ = µf (x, y), ẏ = g(x, y, z), ż = εh(x, y, z), (3)

wherex = x1, y = x2, z = x4 (or z = x3). The time con-
stantsε andµ express the idea that not all variables will
evolve on the same timescale. In general, 0< ε � µ � 1,
which expresses the experience thaty evolves on the fastest
time scale whilex and z are identified as intermediate and
slow variables, respectively. This model has served as an
important motivation for the simplest possible geometrical
interpretation of weakly stable dynamics frequently encoun-
tered in non-linear heterogeneous catalytic reactions[4].

3. One-parameter family of two-variable dynamical
systems

We shall first study a one-parameter two-variable dynam-
ical subsystem of (3) with the parameterz, 0 ≤ z ≤ 1:

ẋ = µf (x, y), ẏ = g(x, y, z). (4)

As an example, consider the planar system for the catalytic
surface coverages by hydrogen and oxygen adsorbed

ẋ = K1(1 − x − y)2 − K−1x
2 − 2K30 eµ3yx2y, (5)

ẏ =K2(1 − x − y)2 − K−2y
2 − K30 eµ3yx2y

−K40 eµ4y+µ5zy, (6)

wherex = x1, y = x2, K1 = 2k1x5, K2 = 2k2x6, andKi =
2ki for i = −1 and−2,K30 = k30,K40 = k40x5,µ3 = µ32,
µ4 = µ42, µ5 = µ43 or µ5 = µ44. It should be noted that
with introduction of an additional small parameterµ = K1,
whenK1 � K2 andy is not small, the system (5)–(6) can
exhibit relaxation oscillations.

4. Phase portraits

In previous papers we studied the system (5)–(6) in details
and obtained examples of rather complex dynamics[14].
Phase portraits with up to five steady states and stable and
unstable limit cycles are shown inFig. 1. We found the
various phase portraits A–F and M–P of the system (5)–(6)
as the parametersK1, K2 vary as given inTable 1.

Two cycles, one of which is stable while the other is
unstable, exist around the unique stable steady state atK1 =
0.005,K−1 = 0.001,K2 = 0.15,K−2 = 0.002,k30 = 500,
k40 eµ5z = 1.5,µ3 = −80,µ4 = −10 (picture G). If we fix
all parameters and letK2 vary, then forK2 ∈ [0,0.19] the
only one steady state exists and it is a sink. But atK2 =
0.1033 two full grown limit cycles (stable and unstable)
suddenly appear and the system has the phase portrait like
G for K2 > 0.1033. Such phenomenon could be called as
“a blue sky bifurcation”[15].

The unstable limit cycle shown in the picture H takes
place atK1 = 0.0004,K−1 = 0.01,K2 = 0.07565,K−2 =
0, k30 = 10, k40 eµ5z = 2, µ3 = −30,µ4 = −13. For the
sameK−2, k30, k40 eµ5z, µ3, µ4 andK1 = 0.0001,K−1 =
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Table 1
ParametersK1 and K2 for some phase portraits shown inFig. 1

A B C D F M N O P

K1 1.3 2.45 1.3 2.3 2.45 1.1 1.1 1.16 2.45
K2 60.8 112.2 82.238 110.0 113.681 91.9175 91.96 95.3437 114.1

The other parameters are as follows:K−1 = 0.1, K−2 = 0.49, k30 = 1000,k40 eµ5z = 2000,µ3 = −21, µ4 = −13.5.

Fig. 1. Phase portraits of the model (5)–(6) in the (x, y) plane. Unstable
limit cycles are shown as dashed curves.

10−6, the pictures I, J, K and L arise consecutively while
decreasingK2 from 0.076 to 0.0742. AtK1 = 0.2, K−1 =
0.0025,K2 = 15, K−2 = 0, k30 = 100, k40 = 2, µ3 =
−30, µ4 = −13, µ5 = 10, the phase portraits change as
A → C → E → B → A upon parameterz increasing from
0 to 1.

Fig. 2 shows the diagram of possible transitions between
different phase portraits ofFig. 1 by means of the simplest
steady states bifurcations and the simplest periodic orbits bi-
furcations (so called bifurcations of the unit co-dimension).
Detailed description of bifurcations concerned is given in

Fig. 2. The scheme of possible transitions among the phase portraits
shown inFig. 1 by local and global bifurcations.

[14]. We will not discuss the completion of this phase por-
traits collection in other ways then to note, that here the
harmonic oscillations occurring in the Hopf bifurcation can
become relaxation oscillations. Hence, the local analysis
cannot be expected to provide complete information on the
possible system dynamics.

5. Relaxation oscillations

Suppose now thatK1 � K2 andµ = K1 is a small pa-
rameter in (5)–(6). Ify is not small then we have|ẋ| � |ẏ|
except in a neighborhood of the curveg(x, y, z) = 0. There-
fore, the family of horizontal linesy = constant approxi-
mates the flow of (5)–(6) away fromg = 0 increasingly well
asµ → 0. Near the curveg = 0, both solution components
are comparable and hence, after entering the boundary layer
near this curve, the trajectories turn sharply and followg =
0 until they reach a critical point where they must leave the
curveg = 0 and follow linesy = constant to another point
at g = 0. Thus any trajectory that starts outside the singular
point reaches a neighborhood of the curve ABCD in finite
time and stays in that neighborhood forever (seeFig. 3).

An example of relaxation oscillations in the two-variable
model is given inFig. 4. Considering the system (5)–(6) we
have discovered that there exists a valuezc such that forz in
a small neighborhood ofzc the limit cycle ABCD deforms
into a canard A′BCDB′ given inFig. 5. As z increases (still
in the neighborhood ofzc) the head of the canard A′BB′ gets
smaller and in the next stage there is the second unstable
limit cycle (“a duck EFD without a head”) inside the stable
canard limit cycle as given inFig. 6.

Fig. 3. Limit cycle of the classical relaxation oscillation with the fast
motion along BC, DA and slow motion along AB, CD.
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Fig. 4. Example of relaxation oscillations in the system (5)–(6).

Fig. 5. A canard limit cycle A′BCDB′. Morphology of the canard: A′ is
a bill, B′ is a neck, C is a tail.

Fig. 6. A canard with the unstable limit cycle inside it.

6. One-parameter family of limit cycles

Now, we describe phase portraits of the model (5)–(6) as
the parameterz varies and

K1 = 0.2, K−1 = 0.0025, K2 = 15, K−2 = 0,

k30 = 100, k40 = 2, µ3 = −30, µ4 = −13,

µ5 = 10.

We would like to point out that the canard configuration in-
deed occurs in the system (5)–(6). At fist, it is convenient to
draw a transition from the Hopf bifurcation to the relaxation
oscillations in the one-parameter family of stable limit cy-
cles. The corresponding phase portraits are shown inFig. 7
where the curves 1 and 2 present harmonic oscillations born
in the Hoph bifurcation being closed toz = 0.3554, while
the cycles 4–9 present relaxation oscillations. It should be
pointed out, that in the orbit 10 an important feature is appar-
ent: this limit cycle has already got a canard configuration.
The question is: how does the limit cycle disappear when
we increasez further? In what follows we shall concentrate
on the case thatz is in the neighborhood of 0.445 and we
shall see that the range ofz is extremely small where the
canard configuration is observed. More precisely, asµ → 0
a canard is characterized by

z = zm − σ e−1/kµ,
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Fig. 7. One-parameter family of the stable limit cycles for different parameter valuesz in the model (5)–(6):z = 0.3554 (1), 0.3560 (2), 0.36 (3), 0.37
(4), 0.38 (5), 0.40 (6), 0.42 (7), 0.44 (8), 0.4425 (9), 0.4452 (10).

where σ > 0, k > 0. The group of French mathemati-
cians called the process of study as “a chase on canards”
[8].

7. Stable and unstable supercritical ducks

We established numerically that canard configurations oc-
cur when 0.445017< z < zm with zm = 0.445233121773.
The most interesting thing about the canards is the follow-
ing: in the canard situation a trajectory that comes down
along the stable manifold continues for a while along the
unstable manifold.

It might be thought that the next Hopf bifurcation oc-
curring asz passes with increasing through a certain value
zH would give degeneration of stable periodic orbits, but in
subsequent analysis it was shown that unstable periodic or-
bits shrink down upon the sink asz decreases towardszH
and no closed orbits exist near this fixed point forz > zm.
The corresponding diagram is sketched inFig. 8. Thus it
turns out that there are two breeds of canards in the model
(5)–(6).

Now, we focus our attention on the graph ofA(z) in the
interval [zc, zm], whereA(z) measures the area enclosed by
limit cycles. The phase portraits for these parameter values

Fig. 8. Canards disappearance with a stable singular point atz = zm. “A”
measures the area enclosed by the limit cycles.

are shown inFig. 9. In particular, note that for eachz-value
there is an unstable limit cycle inside the stable limit cycle.
A singular point of the system (5)–(6) is now stable and there
are ducks as stable limit cycles (curves 2–5,Fig. 9) with the
growing supercritical ducks without heads as unstable limit
cycles (curves 2′–5′, Fig. 9) It is the most complicated part
of ducks phenomenology. As we increasez further the two
cycles coalesce atzm between curves 5 and 5′ (“a blue sky
bifurcation” occurs). It is not difficult to see that forz > zm
trajectories spiralize toward the singular point.
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Fig. 9. Ducks forz = 0.445017 (1,1′), 0.445224 (2,2′), 0.445233 (3,3′), 0.44523312 (4,4′), 0.445233121770 (5,5′) in the model (5)–(6).

8. Sensitive dependence on initial conditions

In classical strategies for non-linear oscillations analy-
sis the stress is on the individual solution curves and their
properties. Here we shall be more concerned with families
of such curves (bundles of trajectories) and hence, with the
global behavior of the flow in the phase space of the system
considered. Therefore, a global error in long-term numerical
integration of ODEs will be of interest. We shall refer to the
local expansion of orbits starting arbitrary close together as
sensitive dependence on the initial conditions. Studying the
problem of the Canards it has became clear that the paramet-
ric sensitivity appears in such phenomenon in Non-Standard
Analysis as a tunnel.

A whirlpool is a trajectory bundle, when trajectories were
perceptibly far from each other but then become infinitely
close.A shower is a trajectory bundle, when trajectories were
infinitely close to each other and then diverged perceptibly
far. A tunnel is a trajectory bundle, which behaves first like a
whirlpool (tunnel entry) and then like a shower (tunnel exit).
As an example we demonstrate the situation “a shower” in
the middle ofFig. 4.

In Fig. 9, we illustrate the sensitive dependence on initial
conditions. For concreteness, cycles 2′–5′ and 2–5 form
a tunnel with growing length asz increases. The attrac-
tion basins of the corresponding stable limit cycles are
so narrow that small perturbations (numerical or physical)

prevent typical orbits from achieving periodic asymptotic
behavior.

Thus, considering the model (5)–(6) of catalytic hydrogen
oxidation, we have discovered that there exists a surface state
of the catalyst for which the system shows extremely high
sensitivity to the initial conditions (the surface coverages
by hydrogen and oxygen or concentration of a compound
dissolved into subsurface layer) from a small neighborhood
of this state. This situation is rather unusual but we think
that this phenomenon is one of the keys to weakly stable
dynamics in three-variable systems.

9. Weakly stable dynamics

The system (3) can be embedded in a one-parameter fam-
ily of dynamical systems

ẋ = µf (x, y, κ), ẏ = g(x, y, z, κ), ż = εh(x, y, z)

(7)

with the bifurcation parameterκ = x5 being partial pressure
of hydrogen in the gas phase. Now we shall varyκ to obtain
a system with weakly stable dynamics[11]. Numerical in-
tegration of the system (7) appears to yield trajectories that
are not asymptotically periodic (seeFig. 10). In fact in some
cases we observe chaotic orbits followed by asymptotically
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Fig. 10. Weakly stable dynamics in the system (7): phase-portrait (a) and its projection on the plane “surface coverage by oxygen adsorbed,Y—concentration
of oxygen dissolved into catalyst sublayer, Z” (b).K1 = 0.152,K−1 = 0.008,K2 = 20, K−2 = 0, k30 = 100, k40 = 2, µ3 = −30, µ4 = −12, µ5 = 10,
ε = 0.0024,k−6/k6 = 7.88.

a



158 G.A. Chumakov, N.A. Chumakova / Chemical Engineering Journal 91 (2003) 151–158

periodic motions. Since we enter a realm in which the theory
remains in an unsatisfactory state, we would like to point
out some reasons of weakly stable behavior appearance in
the system (7):

(i) an attractor containing Mobius band is presented in the
phase space of the system (7);

(ii) a subregion on the attractor exists with a high sensitive
dependence on the initial conditions; note that in the
model (7) it occurs in a neighborhood of the canard
configuration for the one-parameter family (5)–(6);

(iii) infinite times the trajectory comes back into this sub-
region.

It should be noted that both breeds of canards are practi-
cally unstable for the numerical integration since a quantity
ln[tr(AT(t)A(t))]/(2t) � 1 on the unstable manifolds of ca-
nards, whereA(t) is the Jacobian matrix of the system (7).
Therefore, a global error in numerical integration of canards
trajectories strongly grows, that inhibits the precise predic-
tion of the future of the dynamical system in attractor with
the properties (i)–(iii).

10. Global error in long-term numerical integration

Here it might be partinent to determinea global error
in long-term numerical integration of ordinary differential
equation

ξ̇ = F(ξ), ξ(0) = ξ0, 0 ≤ t ≤ T . (8)

Having definedtn for n = 0,1,2, . . . and solved some
finite-difference or other discrete equation that approximates
(8), we would obtain an approximationζ n of the true solu-
tion ξ (t) at eachtn. Definingen = ζn−ξ(tn), we shall callen
the global discretization error at the end-point of the inter-
val [0, tn]. Now our aim is to produce some sort of estimate
for en.

To analyze the global discretization error we consider the
local errors of approximation as result of a perturbation of
the original initial problem (8). We regard the approximate
solutionζ (t), whereζ(tn) = ζn as the exact solution of the
initial value problem

ζ̇ = F(ζ ) + δρ(t, ζ ), ζ(0) = ζ0. (9)

Using the functionδρ(t, ζ ) we simulate the finite-difference
scheme, whereδρ(t, ζ ) is the local error of the numerical
discretization process, andδ a small parameter that depends
of the grid step. As the approximate value ofζ−ξ we will use
the first and the only term of the asymptotical decomposition
ζ(t)−ξ(t) = δη(t)+δω(t, δ), whereω(t, δ) → 0 asδ → 0
andt ∈ [0, T ]. The functionη(t) is the solution of the initial
value problem

η̇ = Fζ (ζ(t))η + ρ(t, ζ ), η(0) = 0, (10)

whereFζ (ζ(t)) is the Jacobian matrix of first partial deriva-
tives of the functionF.

The dynamic behavior of the global error in long-term
numerical integration of the system (7) by means of embed-
ded Runge–Kutta methods is shown in detail in our recent
paper[12].
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